home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_4 / 4-4-2.tut < prev    next >
Unknown  |  1996-07-22  |  13.4 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 22 34 00 00 5e 01 00 00 |TUTOR 06|"4..^...|
|00000010| 53 65 63 74 69 6f 6e 20 | 34 2e 34 20 20 43 6f 6e |Section |4.4 Con|
|00000020| 69 63 73 0d 0a 00 0d 0a | 00 0e 65 34 2d 34 2d 31 |ics.....|..e4-4-1|
|00000030| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|00000040| 20 31 0f 20 20 53 6b 65 | 74 63 68 69 6e 67 20 61 | 1. Ske|tching a|
|00000050| 20 50 61 72 61 62 6f 6c | 61 0d 0a 00 0d 0b 00 0e | Parabol|a.......|
|00000060| 65 34 2d 34 2d 32 0e 47 | 75 69 64 65 64 20 45 78 |e4-4-2.G|uided Ex|
|00000070| 61 6d 70 6c 65 20 20 32 | 0f 20 20 46 69 6e 64 69 |ample 2|. Findi|
|00000080| 6e 67 20 74 68 65 20 53 | 74 61 6e 64 61 72 64 20 |ng the S|tandard |
|00000090| 45 71 75 61 74 69 6f 6e | 20 6f 66 20 61 20 50 61 |Equation| of a Pa|
|000000a0| 72 61 62 6f 6c 61 0d 0a | 00 0d 0b 00 0e 65 34 2d |rabola..|.....e4-|
|000000b0| 34 2d 33 0e 47 75 69 64 | 65 64 20 45 78 61 6d 70 |4-3.Guid|ed Examp|
|000000c0| 6c 65 20 20 33 0f 20 20 | 46 69 6e 64 69 6e 67 20 |le 3. |Finding |
|000000d0| 74 68 65 20 53 74 61 6e | 64 61 72 64 20 45 71 75 |the Stan|dard Equ|
|000000e0| 61 74 69 6f 6e 20 6f 66 | 20 61 20 50 61 72 61 62 |ation of| a Parab|
|000000f0| 6f 6c 61 0d 0a 00 0d 0b | 00 0e 65 34 2d 34 2d 34 |ola.....|..e4-4-4|
|00000100| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|00000110| 20 34 0f 20 20 46 69 6e | 64 69 6e 67 20 74 68 65 | 4. Fin|ding the|
|00000120| 20 53 74 61 6e 64 61 72 | 64 20 45 71 75 61 74 69 | Standar|d Equati|
|00000130| 6f 6e 20 6f 66 20 61 20 | 50 61 72 61 62 6f 6c 61 |on of a |Parabola|
|00000140| 0d 0a 00 0d 0b 00 0e 65 | 34 2d 34 2d 35 0e 47 75 |.......e|4-4-5.Gu|
|00000150| 69 64 65 64 20 45 78 61 | 6d 70 6c 65 20 20 35 0f |ided Exa|mple 5.|
|00000160| 20 20 53 6b 65 74 63 68 | 69 6e 67 20 61 6e 20 45 | Sketch|ing an E|
|00000170| 6c 6c 69 70 73 65 0d 0a | 00 0d 0b 00 0e 65 34 2d |llipse..|.....e4-|
|00000180| 34 2d 36 0e 47 75 69 64 | 65 64 20 45 78 61 6d 70 |4-6.Guid|ed Examp|
|00000190| 6c 65 20 20 36 0f 20 20 | 46 69 6e 64 69 6e 67 20 |le 6. |Finding |
|000001a0| 74 68 65 20 53 74 61 6e | 64 61 72 64 20 45 71 75 |the Stan|dard Equ|
|000001b0| 61 74 69 6f 6e 20 6f 66 | 20 61 6e 20 45 6c 6c 69 |ation of| an Elli|
|000001c0| 70 73 65 0d 0a 00 0d 0b | 00 0e 65 34 2d 34 2d 37 |pse.....|..e4-4-7|
|000001d0| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|000001e0| 20 37 0f 20 20 46 69 6e | 64 69 6e 67 20 74 68 65 | 7. Fin|ding the|
|000001f0| 20 53 74 61 6e 64 61 72 | 64 20 45 71 75 61 74 69 | Standar|d Equati|
|00000200| 6f 6e 20 6f 66 20 61 6e | 20 45 6c 6c 69 70 73 65 |on of an| Ellipse|
|00000210| 0d 0a 00 0d 0b 00 0e 65 | 34 2d 34 2d 38 0e 47 75 |.......e|4-4-8.Gu|
|00000220| 69 64 65 64 20 45 78 61 | 6d 70 6c 65 20 20 38 0f |ided Exa|mple 8.|
|00000230| 20 20 53 6b 65 74 63 68 | 69 6e 67 20 74 68 65 20 | Sketch|ing the |
|00000240| 47 72 61 70 68 20 6f 66 | 20 61 20 48 79 70 65 72 |Graph of| a Hyper|
|00000250| 62 6f 6c 61 0d 0a 00 0d | 0b 00 0e 65 34 2d 34 2d |bola....|...e4-4-|
|00000260| 39 0e 47 75 69 64 65 64 | 20 45 78 61 6d 70 6c 65 |9.Guided| Example|
|00000270| 20 20 39 0f 20 20 46 69 | 6e 64 69 6e 67 20 74 68 | 9. Fi|nding th|
|00000280| 65 20 53 74 61 6e 64 61 | 72 64 20 45 71 75 61 74 |e Standa|rd Equat|
|00000290| 69 6f 6e 20 6f 66 20 61 | 20 48 79 70 65 72 62 6f |ion of a| Hyperbo|
|000002a0| 6c 61 0d 0a 00 0d 0b 00 | 0e 65 34 2d 34 2d 31 30 |la......|.e4-4-10|
|000002b0| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|000002c0| 31 30 0f 20 20 46 69 6e | 64 69 6e 67 20 74 68 65 |10. Fin|ding the|
|000002d0| 20 53 74 61 6e 64 61 72 | 64 20 45 71 75 61 74 69 | Standar|d Equati|
|000002e0| 6f 6e 20 6f 66 20 61 20 | 48 79 70 65 72 62 6f 6c |on of a |Hyperbol|
|000002f0| 61 0d 0a 00 0d 0b 00 0e | 69 34 2d 34 2d 31 0e 49 |a.......|i4-4-1.I|
|00000300| 6e 74 65 67 72 61 74 65 | 64 20 45 78 61 6d 70 6c |ntegrate|d Exampl|
|00000310| 65 20 20 31 0f 20 20 49 | 64 65 6e 74 69 66 79 69 |e 1. I|dentifyi|
|00000320| 6e 67 20 74 68 65 20 47 | 72 61 70 68 73 20 6f 66 |ng the G|raphs of|
|00000330| 20 43 6f 6e 69 63 20 53 | 65 63 74 69 6f 6e 73 0d | Conic S|ections.|
|00000340| 0a 00 0d 0b 00 0e 69 34 | 2d 34 2d 32 0e 49 6e 74 |......i4|-4-2.Int|
|00000350| 65 67 72 61 74 65 64 20 | 45 78 61 6d 70 6c 65 20 |egrated |Example |
|00000360| 20 32 0f 20 20 41 70 70 | 6c 69 63 61 74 69 6f 6e | 2. App|lication|
|00000370| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 34 2e 34 20 20 |...Secti|on 4.4 |
|00000380| 43 6f 6e 69 63 73 0d 0b | 00 46 69 6e 64 20 74 68 |Conics..|.Find th|
|00000390| 65 20 76 65 72 74 65 78 | 20 61 6e 64 20 66 6f 63 |e vertex| and foc|
|000003a0| 75 73 20 6f 66 20 74 68 | 65 20 70 61 72 61 62 6f |us of th|e parabo|
|000003b0| 6c 61 20 61 6e 64 20 73 | 6b 65 74 63 68 20 69 74 |la and s|ketch it|
|000003c0| 73 20 67 72 61 70 68 2e | 0d 0a 00 20 20 20 20 20 |s graph.|... |
|000003d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|000003e0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|000003f0| 20 20 20 20 20 20 11 33 | 79 20 20 11 31 2b 20 11 | .3|y .1+ .|
|00000400| 33 78 20 11 31 3d 20 30 | 0d 0a 00 0d 0b 00 13 12 |3x .1= 0|........|
|00000410| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 0d 0b |1SOLUTIO|N.0.....|
|00000420| 00 53 69 6e 63 65 20 74 | 68 65 20 73 71 75 61 72 |.Since t|he squar|
|00000430| 65 64 20 74 65 72 6d 20 | 69 6e 20 74 68 65 20 65 |ed term |in the e|
|00000440| 71 75 61 74 69 6f 6e 20 | 69 6e 76 6f 6c 76 65 73 |quation |involves|
|00000450| 20 11 33 79 11 31 2c 20 | 77 65 20 6b 6e 6f 77 20 | .3y.1, |we know |
|00000460| 74 68 61 74 20 74 68 65 | 20 61 78 69 73 20 69 73 |that the| axis is|
|00000470| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000480| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|000004a0| 0d 0b 00 11 31 68 6f 72 | 69 7a 6f 6e 74 61 6c 20 |....1hor|izontal |
|000004b0| 61 6e 64 20 77 65 20 68 | 61 76 65 20 74 68 65 20 |and we h|ave the |
|000004c0| 73 74 61 6e 64 61 72 64 | 20 66 6f 72 6d 20 11 33 |standard| form .3|
|000004d0| 79 20 20 11 31 3d 20 34 | 11 33 70 78 11 31 2e 13 |y .1= 4|.3px.1..|
|000004e0| 0d 0a 00 0d 0b 00 57 72 | 69 74 69 6e 67 20 6f 75 |......Wr|iting ou|
|000004f0| 72 20 65 71 75 61 74 69 | 6f 6e 20 69 6e 20 74 68 |r equati|on in th|
|00000500| 69 73 20 66 6f 72 6d 20 | 77 65 20 68 61 76 65 0d |is form |we have.|
|00000510| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000530| 34 28 20 20 29 0d 0b 00 | 20 20 20 20 20 20 20 20 |4( )...| |
|00000540| 20 20 20 11 32 32 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00000550| 20 20 32 20 20 20 20 11 | 34 21 20 11 31 31 11 34 | 2 .|4! .11.4|
|00000560| 21 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 11 33 |!... | .3|
|00000570| 79 20 20 11 31 3d 20 2d | 11 33 78 20 20 11 31 6f |y .1= -|.3x .1o|
|00000580| 72 20 20 11 33 79 20 20 | 11 31 3d 20 34 11 34 21 |r .3y |.1= 4.4!|
|00000590| 11 31 2d 11 34 32 21 11 | 33 78 11 31 2e 0d 0b 00 |.1-.42!.|3x.1....|
|000005a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 21 | | .4!|
|000005c0| 20 11 31 34 11 34 21 0d | 0b 00 20 20 20 20 20 20 | .14.4!.|.. |
|000005d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005e0| 20 20 20 20 20 20 20 39 | 20 20 30 20 20 20 11 31 | 9| 0 .1|
|000005f0| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 31 |.... | 1|
|00000600| 0d 0b 00 54 68 75 73 2c | 20 11 33 70 20 11 31 3d |...Thus,| .3p .1=|
|00000610| 20 2d 11 34 32 11 31 2c | 20 77 68 69 63 68 20 69 | -.42.1,| which i|
|00000620| 6d 70 6c 69 65 73 20 74 | 68 61 74 20 6f 75 72 20 |mplies t|hat our |
|00000630| 70 61 72 61 62 6f 6c 61 | 20 6f 70 65 6e 73 20 74 |parabola| opens t|
|00000640| 6f 20 74 68 65 20 6c 65 | 66 74 20 61 6e 64 20 74 |o the le|ft and t|
|00000650| 68 65 20 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |he ... | |
|00000660| 20 34 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 | 4... | |
|00000670| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000680| 20 20 20 20 20 20 20 20 | 20 20 11 34 28 20 20 20 | | .4( |
|00000690| 20 20 29 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | )... | |
|000006a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000006b0| 20 20 20 20 20 20 20 20 | 20 20 20 21 20 11 31 31 | | ! .11|
|000006c0| 20 20 20 11 34 21 0d 0b | 00 11 31 66 6f 63 75 73 | .4!..|..1focus|
|000006d0| 20 6f 66 20 74 68 65 20 | 70 61 72 61 62 6f 6c 61 | of the |parabola|
|000006e0| 20 69 73 20 61 74 20 28 | 11 33 70 11 31 2c 20 30 | is at (|.3p.1, 0|
|000006f0| 29 20 3d 20 11 34 21 11 | 31 2d 11 34 32 11 31 2c |) = .4!.|1-.42.1,|
|00000700| 20 30 11 34 21 11 31 2e | 20 20 57 65 20 61 6c 73 | 0.4!.1.| We als|
|00000710| 6f 20 6b 6e 6f 77 20 74 | 68 61 74 20 74 68 65 20 |o know t|hat the |
|00000720| 76 65 72 74 65 78 0d 0b | 00 20 20 20 20 20 20 20 |vertex..|. |
|00000730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000740| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|00000750| 21 20 11 31 34 20 20 20 | 11 34 21 0d 0b 00 20 20 |! .14 |.4!... |
|00000760| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000770| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000780| 20 20 20 39 20 20 20 20 | 20 30 0d 0a 00 11 31 69 | 9 | 0....1i|
|00000790| 73 20 28 30 2c 20 30 29 | 2e 00 0c 0d 0a 00 54 6f |s (0, 0)|......To|
|000007a0| 20 73 6b 65 74 63 68 20 | 74 68 65 20 70 61 72 61 | sketch |the para|
|000007b0| 62 6f 6c 61 20 77 65 20 | 70 6c 6f 74 20 74 68 65 |bola we |plot the|
|000007c0| 20 76 65 72 74 65 78 20 | 28 30 2c 20 30 29 20 61 | vertex |(0, 0) a|
|000007d0| 6e 64 20 72 65 63 61 6c | 6c 20 74 68 61 74 20 6f |nd recal|l that o|
|000007e0| 75 72 20 0d 0a 00 70 61 | 72 61 62 6f 6c 61 20 6f |ur ...pa|rabola o|
|000007f0| 70 65 6e 73 20 74 6f 20 | 74 68 65 20 6c 65 66 74 |pens to |the left|
|00000800| 2e 20 20 57 65 20 61 6c | 73 6f 20 6b 6e 6f 77 20 |. We al|so know |
|00000810| 74 68 61 74 20 74 68 65 | 20 70 61 72 61 62 6f 6c |that the| parabol|
|00000820| 61 20 69 73 20 73 79 6d | 6d 65 74 72 69 63 0d 0a |a is sym|metric..|
|00000830| 00 77 69 74 68 20 74 68 | 65 20 68 6f 72 69 7a 6f |.with th|e horizo|
|00000840| 6e 74 61 6c 20 61 78 69 | 73 2c 20 77 68 69 63 68 |ntal axi|s, which|
|00000850| 20 69 6e 20 74 68 69 73 | 20 63 61 73 65 20 69 73 | in this| case is|
|00000860| 20 74 68 65 20 11 33 78 | 11 31 2d 61 78 69 73 2e | the .3x|.1-axis.|
|00000870| 20 20 54 6f 20 6d 61 6b | 65 20 74 68 65 20 0d 0a | To mak|e the ..|
|00000880| 00 73 6b 65 74 63 68 20 | 65 76 65 6e 20 6d 6f 72 |.sketch |even mor|
|00000890| 65 20 61 63 63 75 72 61 | 74 65 2c 20 77 65 20 6d |e accura|te, we m|
|000008a0| 61 79 20 63 68 6f 6f 73 | 65 20 74 6f 20 70 6c 6f |ay choos|e to plo|
|000008b0| 74 20 61 20 70 6f 69 6e | 74 2c 20 66 6f 72 20 69 |t a poin|t, for i|
|000008c0| 6e 73 74 61 6e 63 65 20 | 0d 0a 00 28 2d 34 2c 20 |nstance |...(-4, |
|000008d0| 32 29 2e 20 20 54 68 65 | 72 65 66 6f 72 65 2c 20 |2). The|refore, |
|000008e0| 77 65 20 68 61 76 65 20 | 74 68 65 20 66 6f 6c 6c |we have |the foll|
|000008f0| 6f 77 69 6e 67 20 67 72 | 61 70 68 2e 0d 0a 00 0d |owing gr|aph.....|
|00000900| 0a 00 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 14 |..... | .|
|00000910| 6b 2d 35 2d 33 2d 34 2e | 68 69 14 32 30 14 31 30 |k-5-3-4.|hi.20.10|
|00000920| 14 31 38 14 38 14 0d 0a | 00 0d 0a 00 0d 0a 00 53 |.18.8...|.......S|
|00000930| 65 63 74 69 6f 6e 20 34 | 2e 34 20 20 43 6f 6e 69 |ection 4|.4 Coni|
|00000940| 63 73 0d 0b 00 46 69 6e | 64 20 61 6e 20 65 71 75 |cs...Fin|d an equ|
|00000950| 61 74 69 6f 6e 20 6f 66 | 20 74 68 65 20 68 79 70 |ation of| the hyp|
|00000960| 65 72 62 6f 6c 61 20 77 | 69 74 68 20 63 65 6e 74 |erbola w|ith cent|
|00000970| 65 72 20 61 74 20 74 68 | 65 20 6f 72 69 67 69 6e |er at th|e origin|
|00000980| 2c 20 76 65 72 74 69 63 | 65 73 0d 0a 00 0d 0b 00 |, vertic|es......|
|00000990| 20 20 20 11 34 28 20 20 | 20 20 20 44 32 32 29 0d | .4( | D22).|
|000009a0| 0b 00 11 31 61 74 20 11 | 34 21 11 31 30 2c 20 11 |...1at .|4!.10, .|
|000009b0| 34 2b 53 20 11 31 31 35 | 11 34 21 20 11 31 61 6e |4+S .115|.4! .1an|
|000009c0| 64 20 70 61 73 73 65 73 | 20 74 68 72 6f 75 67 68 |d passes| through|
|000009d0| 20 28 32 2c 20 35 29 2e | 0d 0b 00 20 20 20 11 34 | (2, 5).|... .4|
|000009e0| 39 20 20 20 20 20 20 20 | 20 30 0d 0a 00 0d 0b 00 |9 | 0......|
|000009f0| 11 31 13 12 31 53 4f 4c | 55 54 49 4f 4e 12 30 0d |.1..1SOL|UTION.0.|
|00000a00| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000a10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|00000a20| 28 20 20 20 20 44 32 32 | 29 20 20 20 20 20 28 20 |( D22|) ( |
|00000a30| 20 20 20 20 44 32 32 29 | 0d 0b 00 11 31 53 69 6e | D22)|....1Sin|
|00000a40| 63 65 20 74 68 65 20 76 | 65 72 74 69 63 65 73 20 |ce the v|ertices |
|00000a50| 6f 63 63 75 72 20 61 74 | 20 11 34 21 11 31 30 2c |occur at| .4!.10,|
|00000a60| 20 11 34 53 20 11 31 31 | 35 11 34 21 20 11 31 61 | .4S .11|5.4! .1a|
|00000a70| 6e 64 20 11 34 21 11 31 | 30 2c 20 2d 11 34 53 20 |nd .4!.1|0, -.4S |
|00000a80| 11 31 31 35 11 34 21 20 | 11 31 77 65 20 6b 6e 6f |.115.4! |.1we kno|
|00000a90| 77 20 74 68 61 74 20 74 | 68 65 20 0d 0b 00 20 20 |w that t|he ... |
|00000aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ab0| 20 20 20 20 20 20 20 20 | 20 20 11 34 39 20 20 20 | | .49 |
|00000ac0| 20 20 20 20 30 20 20 20 | 20 20 39 20 20 20 20 20 | 0 | 9 |
|00000ad0| 20 20 20 30 0d 0a 00 0d | 0b 00 11 31 74 72 61 6e | 0....|...1tran|
|00000ae0| 73 76 65 72 73 65 20 61 | 78 69 73 20 69 73 20 76 |sverse a|xis is v|
|00000af0| 65 72 74 69 63 61 6c 20 | 61 6e 64 20 77 65 20 68 |ertical |and we h|
|00000b00| 61 76 65 20 74 68 65 20 | 66 6f 72 6d 20 0d 0a 00 |ave the |form ...|
|00000b10| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000b20| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|00000b30| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00000b40| 20 20 20 20 20 20 20 20 | 20 11 33 79 20 20 20 20 | | .3y |
|00000b50| 78 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |x | |
|00000b60| 20 20 11 34 44 32 32 0d | 0b 00 20 20 20 20 20 20 | .4D22.|.. |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|00000b80| 32 20 11 31 2d 20 11 34 | 32 32 20 11 31 3d 20 31 |2 .1- .4|22 .1= 1|
|00000b90| 20 77 68 65 72 65 20 11 | 33 61 20 11 31 3d 20 11 | where .|3a .1= .|
|00000ba0| 34 53 20 11 31 31 35 2e | 0d 0b 00 20 20 20 20 20 |4S .115.|... |
|00000bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bc0| 20 11 32 32 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | .22 |2... |
|00000bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000be0| 20 11 33 61 20 20 20 20 | 62 20 20 20 20 20 20 20 | .3a |b |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00000c00| 13 0d 0a 00 0d 0b 00 4b | 6e 6f 77 69 6e 67 20 74 |.......K|nowing t|
|00000c10| 68 61 74 20 74 68 65 20 | 67 72 61 70 68 20 70 61 |hat the |graph pa|
|00000c20| 73 73 65 73 20 74 68 72 | 6f 75 67 68 20 74 68 65 |sses thr|ough the|
|00000c30| 20 70 6f 69 6e 74 20 28 | 32 2c 20 35 29 2c 20 77 | point (|2, 5), w|
|00000c40| 65 20 63 61 6e 20 70 6c | 75 67 20 74 68 65 73 65 |e can pl|ug these|
|00000c50| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000c60| 20 20 20 20 20 20 20 20 | 20 20 11 34 44 32 32 0d | | .4D22.|
|00000c70| 0b 00 11 31 76 61 6c 75 | 65 73 20 61 6c 6f 6e 67 |...1valu|es along|
|00000c80| 20 77 69 74 68 20 11 33 | 61 20 11 31 3d 20 11 34 | with .3|a .1= .4|
|00000c90| 53 20 11 31 31 35 20 74 | 6f 20 64 65 74 65 72 6d |S .115 t|o determ|
|00000ca0| 69 6e 65 20 11 33 62 11 | 31 2e 0d 0a 00 20 20 20 |ine .3b.|1.... |
|00000cb0| 20 20 20 20 20 11 32 32 | 20 20 20 20 20 20 32 0d | .22| 2.|
|00000cc0| 0b 00 20 20 20 20 20 20 | 20 11 31 35 20 20 20 20 |.. | .15 |
|00000cd0| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00000ce0| 20 32 35 20 20 20 34 0d | 0b 00 20 20 20 20 11 34 | 25 4.|.. .4|
|00000cf0| 32 32 32 32 32 32 32 20 | 11 31 2d 20 11 34 32 32 |2222222 |.1- .422|
|00000d00| 20 11 31 3d 20 31 20 20 | 20 11 34 35 35 36 20 20 | .1= 1 | .4556 |
|00000d10| 20 32 32 20 11 31 2d 20 | 11 34 32 32 20 11 31 3d | 22 .1- |.422 .1=|
|00000d20| 20 31 0d 0b 00 20 20 20 | 20 11 34 28 20 44 32 32 | 1... | .4( D22|
|00000d30| 29 11 32 32 20 20 20 20 | 32 20 20 20 20 20 20 20 |).22 |2 |
|00000d40| 20 20 20 20 20 20 11 31 | 31 35 20 20 20 20 11 32 | .1|15 .2|
|00000d50| 32 0d 0b 00 20 20 20 20 | 11 34 21 53 20 11 31 31 |2... |.4!S .11|
|00000d60| 35 11 34 21 20 20 20 20 | 11 33 62 20 20 20 20 20 |5.4! |.3b |
|00000d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 62 0d | | b.|
|00000d80| 0b 00 20 20 20 20 11 34 | 39 20 20 20 20 30 0d 0a |.. .4|9 0..|
|00000d90| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000da0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000db0| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 20 20 20 | .|22... |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00000de0| 32 11 33 62 20 20 11 31 | 3d 20 31 32 0d 0a 00 20 |2.3b .1|= 12... |
|00000df0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e10| 20 20 20 20 20 20 20 11 | 34 44 32 0d 0b 00 20 20 | .|4D2... |
|00000e20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e40| 20 11 33 62 20 11 31 3d | 20 11 34 53 20 11 31 36 | .3b .1=| .4S .16|
|00000e50| 13 0d 0a 00 0d 0b 00 54 | 68 65 72 65 66 6f 72 65 |.......T|herefore|
|00000e60| 2c 20 6f 75 72 20 65 71 | 75 61 74 69 6f 6e 20 69 |, our eq|uation i|
|00000e70| 73 20 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |s ... | |
|00000e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e90| 20 20 11 32 32 20 20 20 | 20 32 0d 0b 00 20 20 20 | .22 | 2... |
|00000ea0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000eb0| 20 20 20 20 20 20 20 20 | 20 11 33 79 20 20 20 20 | | .3y |
|00000ec0| 78 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |x... | |
|00000ed0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ee0| 11 34 32 32 20 11 31 2d | 20 11 34 32 32 20 11 31 |.422 .1-| .422 .1|
|00000ef0| 3d 20 31 2e 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |= 1.... | |
|00000f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f10| 20 20 20 31 35 20 20 20 | 36 0d 0a 00 53 65 63 74 | 15 |6...Sect|
|00000f20| 69 6f 6e 20 34 2e 34 20 | 20 43 6f 6e 69 63 73 0d |ion 4.4 | Conics.|
|00000f30| 0b 00 46 69 6e 64 20 61 | 6e 20 65 71 75 61 74 69 |..Find a|n equati|
|00000f40| 6f 6e 20 6f 66 20 61 20 | 70 61 72 61 62 6f 6c 61 |on of a |parabola|
|00000f50| 20 77 69 74 68 20 69 74 | 73 20 76 65 72 74 65 78 | with it|s vertex|
|00000f60| 20 61 74 20 74 68 65 20 | 6f 72 69 67 69 6e 20 61 | at the |origin a|
|00000f70| 6e 64 20 66 6f 63 75 73 | 20 0d 0a 00 28 30 2c 20 |nd focus| ...(0, |
|00000f80| 2d 31 29 2e 0d 0a 00 0d | 0b 00 13 12 31 53 4f 4c |-1).....|....1SOL|
|00000f90| 55 54 49 4f 4e 12 30 0d | 0a 00 0d 0b 00 53 69 6e |UTION.0.|.....Sin|
|00000fa0| 63 65 20 74 68 65 20 61 | 78 69 73 20 70 61 73 73 |ce the a|xis pass|
|00000fb0| 65 73 20 74 68 72 6f 75 | 67 68 20 74 68 65 20 76 |es throu|gh the v|
|00000fc0| 65 72 74 65 78 2c 20 28 | 30 2c 20 30 29 2c 20 61 |ertex, (|0, 0), a|
|00000fd0| 6e 64 20 74 68 65 20 66 | 6f 63 75 73 2c 20 28 30 |nd the f|ocus, (0|
|00000fe0| 2c 20 2d 31 29 2c 0d 0a | 00 20 20 20 20 20 20 20 |, -1),..|. |
|00000ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001000| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001010| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001020| 20 20 20 20 20 11 32 32 | 0d 0b 00 11 31 77 65 20 | .22|....1we |
|00001030| 6b 6e 6f 77 20 74 68 61 | 74 20 74 68 65 20 61 78 |know tha|t the ax|
|00001040| 69 73 20 69 73 20 76 65 | 72 74 69 63 61 6c 20 61 |is is ve|rtical a|
|00001050| 6e 64 20 77 65 20 63 6f | 6e 73 69 64 65 72 20 74 |nd we co|nsider t|
|00001060| 68 65 20 66 6f 72 6d 20 | 11 33 78 20 20 11 31 3d |he form |.3x .1=|
|00001070| 20 34 11 33 70 79 11 31 | 2e 13 0d 0a 00 0d 0b 00 | 4.3py.1|........|
|00001080| 53 69 6e 63 65 20 74 68 | 65 20 66 6f 63 75 73 20 |Since th|e focus |
|00001090| 69 73 20 6f 66 20 74 68 | 65 20 66 6f 72 6d 20 28 |is of th|e form (|
|000010a0| 30 2c 20 11 33 70 11 31 | 29 2c 20 77 65 20 63 6f |0, .3p.1|), we co|
|000010b0| 6e 63 6c 75 64 65 20 74 | 68 61 74 20 11 33 70 20 |nclude t|hat .3p |
|000010c0| 11 31 3d 20 2d 31 20 61 | 6e 64 20 74 68 65 0d 0a |.1= -1 a|nd the..|
|000010d0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |. | .2|
|000010e0| 32 0d 0b 00 11 31 65 71 | 75 61 74 69 6f 6e 20 69 |2....1eq|uation i|
|000010f0| 73 20 11 33 78 20 20 11 | 31 3d 20 34 28 2d 31 29 |s .3x .|1= 4(-1)|
|00001100| 11 33 79 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |.3y.....|. |
|00001110| 20 20 20 20 20 20 20 20 | 11 31 3d 20 2d 34 11 33 | |.1= -4.3|
|00001120| 79 11 31 2e 0d 0a 00 53 | 65 63 74 69 6f 6e 20 34 |y.1....S|ection 4|
|00001130| 2e 34 20 20 43 6f 6e 69 | 63 73 0d 0b 00 46 69 6e |.4 Coni|cs...Fin|
|00001140| 64 20 61 6e 20 65 71 75 | 61 74 69 6f 6e 20 6f 66 |d an equ|ation of|
|00001150| 20 61 20 70 61 72 61 62 | 6f 6c 61 20 77 69 74 68 | a parab|ola with|
|00001160| 20 69 74 73 20 76 65 72 | 74 65 78 20 61 74 20 74 | its ver|tex at t|
|00001170| 68 65 20 6f 72 69 67 69 | 6e 20 61 6e 64 20 64 69 |he origi|n and di|
|00001180| 72 65 63 74 72 69 78 0d | 0a 00 11 33 79 20 11 31 |rectrix.|...3y .1|
|00001190| 3d 20 32 2e 0d 0a 00 0d | 0b 00 13 12 31 53 4f 4c |= 2.....|....1SOL|
|000011a0| 55 54 49 4f 4e 12 30 0d | 0a 00 0d 0b 00 53 69 6e |UTION.0.|.....Sin|
|000011b0| 63 65 20 74 68 65 20 64 | 69 72 65 63 74 72 69 78 |ce the d|irectrix|
|000011c0| 20 69 73 20 67 69 76 65 | 6e 20 69 6e 20 74 68 65 | is give|n in the|
|000011d0| 20 66 6f 72 6d 20 11 33 | 79 20 11 31 3d 20 2d 11 | form .3|y .1= -.|
|000011e0| 33 70 20 11 31 77 65 20 | 63 61 6e 20 69 6d 6d 65 |3p .1we |can imme|
|000011f0| 64 69 61 74 65 6c 79 20 | 63 6f 6e 63 6c 75 64 65 |diately |conclude|
|00001200| 0d 0a 00 74 68 61 74 20 | 77 65 20 68 61 76 65 20 |...that |we have |
|00001210| 61 20 76 65 72 74 69 63 | 61 6c 20 61 78 69 73 20 |a vertic|al axis |
|00001220| 61 6e 64 20 74 68 61 74 | 20 2d 11 33 70 20 11 31 |and that| -.3p .1|
|00001230| 3d 20 32 20 6f 72 20 11 | 33 70 20 11 31 3d 20 2d |= 2 or .|3p .1= -|
|00001240| 32 2e 13 0d 0a 00 0d 0b | 00 46 72 6f 6d 20 74 68 |2.......|.From th|
|00001250| 69 73 20 77 65 20 6b 6e | 6f 77 20 74 68 61 74 20 |is we kn|ow that |
|00001260| 74 68 65 20 66 6f 63 75 | 73 20 69 73 20 61 74 20 |the focu|s is at |
|00001270| 28 30 2c 20 2d 32 29 20 | 61 6e 64 20 77 65 20 63 |(0, -2) |and we c|
|00001280| 6f 6e 73 69 64 65 72 20 | 74 68 65 20 66 6f 72 6d |onsider |the form|
|00001290| 0d 0a 00 20 11 32 32 0d | 0b 00 11 33 78 20 20 11 |... .22.|...3x .|
|000012a0| 31 3d 20 34 11 33 70 79 | 11 31 2e 13 0d 0a 00 20 |1= 4.3py|.1..... |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012c0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|000012d0| 00 11 31 54 68 65 72 65 | 66 6f 72 65 2c 20 74 68 |..1There|fore, th|
|000012e0| 65 20 65 71 75 61 74 69 | 6f 6e 20 69 73 20 11 33 |e equati|on is .3|
|000012f0| 78 20 20 11 31 3d 20 34 | 28 2d 32 29 11 33 79 0d |x .1= 4|(-2).3y.|
|00001300| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001320| 20 20 20 11 31 3d 20 2d | 38 11 33 79 11 31 2e 0d | .1= -|8.3y.1..|
|00001330| 0a 00 53 65 63 74 69 6f | 6e 20 34 2e 34 20 20 43 |..Sectio|n 4.4 C|
|00001340| 6f 6e 69 63 73 0d 0b 00 | 46 69 6e 64 20 61 6e 20 |onics...|Find an |
|00001350| 65 71 75 61 74 69 6f 6e | 20 6f 66 20 61 20 70 61 |equation| of a pa|
|00001360| 72 61 62 6f 6c 61 20 77 | 69 74 68 20 69 74 73 20 |rabola w|ith its |
|00001370| 76 65 72 74 65 78 20 61 | 74 20 74 68 65 20 6f 72 |vertex a|t the or|
|00001380| 69 67 69 6e 20 61 6e 64 | 20 61 20 0d 0a 00 68 6f |igin and| a ...ho|
|00001390| 72 69 7a 6f 6e 74 61 6c | 20 61 78 69 73 20 61 6e |rizontal| axis an|
|000013a0| 64 20 70 61 73 73 65 73 | 20 74 68 72 6f 75 67 68 |d passes| through|
|000013b0| 20 74 68 65 20 70 6f 69 | 6e 74 20 28 2d 31 2c 20 | the poi|nt (-1, |
|000013c0| 32 29 2e 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 |2)......|...1SOLU|
|000013d0| 54 49 4f 4e 12 30 0d 0a | 00 20 20 20 20 20 20 20 |TION.0..|. |
|000013e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001410| 32 32 0d 0b 00 11 31 53 | 69 6e 63 65 20 77 65 20 |22....1S|ince we |
|00001420| 68 61 76 65 20 61 20 68 | 6f 72 69 7a 6f 6e 74 61 |have a h|orizonta|
|00001430| 6c 20 61 78 69 73 20 77 | 65 20 63 6f 6e 73 69 64 |l axis w|e consid|
|00001440| 65 72 20 74 68 65 20 66 | 6f 72 6d 20 11 33 79 20 |er the f|orm .3y |
|00001450| 20 11 31 3d 20 34 11 33 | 70 78 11 31 2e 13 0d 0a | .1= 4.3|px.1....|
|00001460| 00 0d 0b 00 4b 6e 6f 77 | 69 6e 67 20 74 68 61 74 |....Know|ing that|
|00001470| 20 74 68 65 20 67 72 61 | 70 68 20 70 61 73 73 65 | the gra|ph passe|
|00001480| 73 20 74 68 72 6f 75 67 | 68 20 74 68 65 20 70 6f |s throug|h the po|
|00001490| 69 6e 74 20 28 2d 31 2c | 20 32 29 20 77 65 20 63 |int (-1,| 2) we c|
|000014a0| 61 6e 20 70 6c 75 67 20 | 74 68 65 73 65 0d 0a 00 |an plug |these...|
|000014b0| 76 61 6c 75 65 73 20 69 | 6e 74 6f 20 74 68 65 20 |values i|nto the |
|000014c0| 65 71 75 61 74 69 6f 6e | 20 61 6e 64 20 64 65 74 |equation| and det|
|000014d0| 65 72 6d 69 6e 65 20 11 | 33 70 11 31 2e 0d 0a 00 |ermine .|3p.1....|
|000014e0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000014f0| 20 11 31 32 20 20 3d 20 | 34 11 33 70 11 31 28 2d | .12 = |4.3p.1(-|
|00001500| 31 29 0d 0a 00 20 20 20 | 20 20 34 20 3d 20 2d 34 |1)... | 4 = -4|
|00001510| 11 33 70 0d 0a 00 20 20 | 20 20 11 31 2d 31 20 3d |.3p... | .1-1 =|
|00001520| 20 11 33 70 11 31 13 0d | 0a 00 0d 0b 00 54 68 65 | .3p.1..|.....The|
|00001530| 72 65 66 6f 72 65 2c 20 | 77 65 20 6b 6e 6f 77 20 |refore, |we know |
|00001540| 74 68 65 20 66 6f 63 75 | 73 20 69 73 20 61 74 20 |the focu|s is at |
|00001550| 28 11 33 70 11 31 2c 20 | 30 29 20 3d 20 28 2d 31 |(.3p.1, |0) = (-1|
|00001560| 2c 20 30 29 20 61 6e 64 | 20 6f 75 72 20 65 71 75 |, 0) and| our equ|
|00001570| 61 74 69 6f 6e 20 69 73 | 0d 0a 00 20 20 20 20 20 |ation is|... |
|00001580| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 33 79 20 | .22... | .3y |
|00001590| 20 11 31 3d 20 2d 34 11 | 33 78 11 31 2e 0d 0a 00 | .1= -4.|3x.1....|
|000015a0| 53 65 63 74 69 6f 6e 20 | 34 2e 34 20 20 43 6f 6e |Section |4.4 Con|
|000015b0| 69 63 73 0d 0b 00 46 69 | 6e 64 20 74 68 65 20 63 |ics...Fi|nd the c|
|000015c0| 65 6e 74 65 72 20 61 6e | 64 20 74 68 65 20 76 65 |enter an|d the ve|
|000015d0| 72 74 69 63 65 73 20 6f | 66 20 74 68 65 20 65 6c |rtices o|f the el|
|000015e0| 6c 69 70 73 65 20 61 6e | 64 20 73 6b 65 74 63 68 |lipse an|d sketch|
|000015f0| 20 69 74 73 20 67 72 61 | 70 68 2e 0d 0a 00 20 20 | its gra|ph.... |
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001610| 20 20 20 20 11 32 32 20 | 20 20 20 20 32 0d 0b 00 | .22 | 2...|
|00001620| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001630| 20 20 20 11 31 31 32 11 | 33 79 20 20 11 31 2b 20 | .112.|3y .1+ |
|00001640| 33 11 33 78 20 20 11 31 | 3d 20 31 32 0d 0a 00 0d |3.3x .1|= 12....|
|00001650| 0b 00 13 12 31 53 4f 4c | 55 54 49 4f 4e 12 30 0d |....1SOL|UTION.0.|
|00001660| 0a 00 0d 0b 00 57 65 20 | 62 65 67 69 6e 20 62 79 |.....We |begin by|
|00001670| 20 77 72 69 74 69 6e 67 | 20 74 68 65 20 65 71 75 | writing| the equ|
|00001680| 61 74 69 6f 6e 20 69 6e | 20 73 74 61 6e 64 61 72 |ation in| standar|
|00001690| 64 20 66 6f 72 6d 2e 0d | 0a 00 20 20 20 20 20 20 |d form..|.. |
|000016a0| 20 20 11 32 32 20 20 20 | 20 20 32 0d 0b 00 20 20 | .22 | 2... |
|000016b0| 20 20 20 11 31 31 32 11 | 33 79 20 20 11 31 2b 20 | .112.|3y .1+ |
|000016c0| 33 11 33 78 20 20 11 31 | 3d 20 31 32 20 20 20 20 |3.3x .1|= 12 |
|000016d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016e0| 20 20 20 20 20 20 20 12 | 31 11 32 47 69 76 65 6e | .|1.2Given|
|000016f0| 20 65 71 75 61 74 69 6f | 6e 11 31 12 30 13 0d 0a | equatio|n.1.0...|
|00001700| 00 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 |. | .22 |
|00001710| 20 32 0d 0b 00 20 20 20 | 20 20 11 31 31 32 11 33 | 2... | .112.3|
|00001720| 79 20 20 20 20 11 31 33 | 11 33 78 20 20 20 20 11 |y .13|.3x .|
|00001730| 31 31 32 0d 0b 00 20 20 | 20 20 20 11 34 32 32 32 |112... | .4222|
|00001740| 32 20 11 31 2b 20 11 34 | 32 32 32 20 11 31 3d 20 |2 .1+ .4|222 .1= |
|00001750| 11 34 32 32 0d 0b 00 20 | 20 20 20 20 20 11 31 31 |.422... | .11|
|00001760| 32 20 20 20 20 31 32 20 | 20 20 20 31 32 13 0d 0a |2 12 | 12...|
|00001770| 00 20 20 20 20 20 20 20 | 20 20 11 32 32 20 20 20 |. | .22 |
|00001780| 20 32 0d 0b 00 20 20 20 | 20 20 20 20 20 11 33 79 | 2... | .3y|
|00001790| 20 20 20 20 78 0d 0b 00 | 20 20 20 20 20 20 20 20 | x...| |
|000017a0| 11 34 32 32 20 11 31 2b | 20 11 34 32 32 20 11 31 |.422 .1+| .422 .1|
|000017b0| 3d 20 31 0d 0b 00 20 20 | 20 20 20 20 20 20 31 20 |= 1... | 1 |
|000017c0| 20 20 20 34 20 20 20 20 | 20 13 0d 0a 00 20 20 20 | 4 | .... |
|000017d0| 20 20 20 20 20 20 11 32 | 32 20 20 20 20 32 0d 0b | .2|2 2..|
|000017e0| 00 20 20 20 20 20 20 20 | 20 11 33 79 20 20 20 20 |. | .3y |
|000017f0| 78 0d 0b 00 20 20 20 20 | 20 20 20 20 11 34 32 32 |x... | .422|
|00001800| 20 11 31 2b 20 11 34 32 | 32 20 11 31 3d 20 31 0d | .1+ .42|2 .1= 1.|
|00001810| 0b 00 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 |.. | .22 |
|00001820| 20 20 32 0d 0b 00 20 20 | 20 20 20 20 20 20 11 31 | 2... | .1|
|00001830| 31 20 20 20 20 32 13 0d | 0a 00 0d 0a 00 0d 0b 00 |1 2..|........|
|00001840| 54 68 69 73 20 69 73 20 | 74 68 65 20 73 74 61 6e |This is |the stan|
|00001850| 64 61 72 64 20 66 6f 72 | 6d 20 6f 66 20 74 68 65 |dard for|m of the|
|00001860| 20 65 71 75 61 74 69 6f | 6e 20 6f 66 20 61 6e 20 | equatio|n of an |
|00001870| 65 6c 6c 69 70 73 65 20 | 77 69 74 68 20 63 65 6e |ellipse |with cen|
|00001880| 74 65 72 20 61 74 20 74 | 68 65 0d 0a 00 6f 72 69 |ter at t|he...ori|
|00001890| 67 69 6e 2c 20 73 6f 20 | 6f 75 72 20 63 65 6e 74 |gin, so |our cent|
|000018a0| 65 72 20 69 73 20 61 74 | 20 28 30 2c 20 30 29 2e |er is at| (0, 0).|
|000018b0| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|000018c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000018d0| 20 20 11 32 32 0d 0b 00 | 11 31 53 69 6e 63 65 20 | .22...|.1Since |
|000018e0| 74 68 65 20 64 65 6e 6f | 6d 69 6e 61 74 6f 72 20 |the deno|minator |
|000018f0| 6f 66 20 74 68 65 20 11 | 33 78 20 11 31 2d 74 65 |of the .|3x .1-te|
|00001900| 72 6d 20 69 73 20 6c 61 | 72 67 65 72 20 74 68 61 |rm is la|rger tha|
|00001910| 6e 20 74 68 65 20 64 65 | 6e 6f 6d 69 6e 61 74 6f |n the de|nominato|
|00001920| 72 20 6f 66 20 74 68 65 | 0d 0a 00 20 11 32 32 0d |r of the|... .22.|
|00001930| 0b 00 11 33 79 20 11 31 | 2d 74 65 72 6d 2c 20 77 |...3y .1|-term, w|
|00001940| 65 20 63 6f 6e 63 6c 75 | 64 65 20 74 68 61 74 20 |e conclu|de that |
|00001950| 74 68 65 20 6d 61 6a 6f | 72 20 61 78 69 73 20 69 |the majo|r axis i|
|00001960| 73 20 68 6f 72 69 7a 6f | 6e 74 61 6c 2e 13 0d 0a |s horizo|ntal....|
|00001970| 00 0d 0b 00 4d 6f 72 65 | 6f 76 65 72 2c 20 73 69 |....More|over, si|
|00001980| 6e 63 65 20 11 33 61 20 | 11 31 3d 20 32 2c 20 74 |nce .3a |.1= 2, t|
|00001990| 68 65 20 76 65 72 74 69 | 63 65 73 20 61 72 65 20 |he verti|ces are |
|000019a0| 28 32 2c 20 30 29 20 61 | 6e 64 20 28 2d 32 2c 20 |(2, 0) a|nd (-2, |
|000019b0| 30 29 2e 13 0d 0a 00 0d | 0b 00 46 69 6e 61 6c 6c |0)......|..Finall|
|000019c0| 79 2c 20 73 69 6e 63 65 | 20 11 33 62 20 11 31 3d |y, since| .3b .1=|
|000019d0| 20 31 2c 20 74 68 65 20 | 65 6e 64 70 6f 69 6e 74 | 1, the |endpoint|
|000019e0| 73 20 6f 66 20 74 68 65 | 20 6d 69 6e 6f 72 20 61 |s of the| minor a|
|000019f0| 78 69 73 20 61 72 65 20 | 28 30 2c 20 31 29 20 61 |xis are |(0, 1) a|
|00001a00| 6e 64 20 28 30 2c 20 2d | 31 29 2e 13 0d 0a 00 0d |nd (0, -|1)......|
|00001a10| 0b 00 4f 75 72 20 73 6b | 65 74 63 68 20 63 6f 6e |..Our sk|etch con|
|00001a20| 6e 65 63 74 73 20 74 68 | 65 73 65 20 66 6f 75 72 |nects th|ese four|
|00001a30| 20 70 6f 69 6e 74 73 20 | 77 69 74 68 20 61 20 73 | points |with a s|
|00001a40| 6d 6f 6f 74 68 20 63 75 | 72 76 65 2e 0d 0a 00 0d |mooth cu|rve.....|
|00001a50| 0a 00 0d 0a 00 0d 0a 00 | 14 6b 2d 35 2d 33 2d 35 |........|.k-5-3-5|
|00001a60| 2e 68 69 14 32 30 14 31 | 38 14 31 38 14 38 14 0d |.hi.20.1|8.18.8..|
|00001a70| 0a 00 0d 0a 00 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |........|Section |
|00001a80| 34 2e 34 20 20 43 6f 6e | 69 63 73 0d 0b 00 46 69 |4.4 Con|ics...Fi|
|00001a90| 6e 64 20 61 6e 20 65 71 | 75 61 74 69 6f 6e 20 6f |nd an eq|uation o|
|00001aa0| 66 20 74 68 65 20 65 6c | 6c 69 70 73 65 20 77 69 |f the el|lipse wi|
|00001ab0| 74 68 20 63 65 6e 74 65 | 72 20 61 74 20 74 68 65 |th cente|r at the|
|00001ac0| 20 6f 72 69 67 69 6e 2c | 20 76 65 72 74 69 63 65 | origin,| vertice|
|00001ad0| 73 20 61 74 0d 0a 00 28 | 11 34 2b 11 31 33 2c 20 |s at...(|.4+.13, |
|00001ae0| 30 29 2c 20 61 6e 64 20 | 66 6f 63 69 20 61 74 20 |0), and |foci at |
|00001af0| 28 11 34 2b 11 31 31 2c | 20 30 29 2e 0d 0a 00 0d |(.4+.11,| 0).....|
|00001b00| 0b 00 13 12 31 53 4f 4c | 55 54 49 4f 4e 12 30 0d |....1SOL|UTION.0.|
|00001b10| 0a 00 0d 0b 00 53 69 6e | 63 65 20 74 68 65 20 76 |.....Sin|ce the v|
|00001b20| 65 72 74 69 63 65 73 20 | 6f 63 63 75 72 20 61 74 |ertices |occur at|
|00001b30| 20 28 33 2c 20 30 29 20 | 61 6e 64 20 28 2d 33 2c | (3, 0) |and (-3,|
|00001b40| 20 30 29 20 77 65 20 6b | 6e 6f 77 20 74 68 61 74 | 0) we k|now that|
|00001b50| 20 74 68 65 20 6d 61 6a | 6f 72 20 61 78 69 73 0d | the maj|or axis.|
|00001b60| 0a 00 69 73 20 68 6f 72 | 69 7a 6f 6e 74 61 6c 20 |..is hor|izontal |
|00001b70| 61 6e 64 20 11 33 61 20 | 11 31 3d 20 33 2e 13 0d |and .3a |.1= 3...|
|00001b80| 0a 00 0d 0b 00 53 69 6e | 63 65 20 74 68 65 20 66 |.....Sin|ce the f|
|00001b90| 6f 63 69 20 6f 63 63 75 | 72 20 61 74 20 28 31 2c |oci occu|r at (1,|
|00001ba0| 20 30 29 20 61 6e 64 20 | 28 2d 31 2c 20 30 29 20 | 0) and |(-1, 0) |
|00001bb0| 77 65 20 6b 6e 6f 77 20 | 74 68 61 74 20 11 33 63 |we know |that .3c|
|00001bc0| 20 11 31 3d 20 31 2e 13 | 0d 0a 00 20 20 20 20 20 | .1= 1..|... |
|00001bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001be0| 32 32 20 20 20 20 32 20 | 20 20 20 32 0d 0b 00 11 |22 2 | 2....|
|00001bf0| 31 55 73 69 6e 67 20 74 | 68 65 20 65 71 75 61 74 |1Using t|he equat|
|00001c00| 69 6f 6e 20 11 33 63 20 | 20 11 31 3d 20 11 33 61 |ion .3c | .1= .3a|
|00001c10| 20 20 11 31 2d 20 11 33 | 62 20 20 11 31 77 65 20 | .1- .3|b .1we |
|00001c20| 63 61 6e 20 6e 6f 77 20 | 73 6f 6c 76 65 20 66 6f |can now |solve fo|
|00001c30| 72 20 11 33 62 11 31 2e | 0d 0a 00 20 20 20 20 20 |r .3b.1.|... |
|00001c40| 20 11 32 32 20 20 20 20 | 32 20 20 20 20 32 0d 0b | .22 |2 2..|
|00001c50| 00 20 20 20 20 20 11 31 | 31 20 20 3d 20 33 20 20 |. .1|1 = 3 |
|00001c60| 2d 20 11 33 62 0d 0a 00 | 20 20 20 20 20 20 20 20 |- .3b...| |
|00001c70| 20 20 20 11 34 44 32 0d | 0b 00 20 20 20 20 20 20 | .4D2.|.. |
|00001c80| 11 33 62 20 11 31 3d 20 | 11 34 53 20 11 31 38 13 |.3b .1= |.4S .18.|
|00001c90| 0d 0a 00 0d 0b 00 54 68 | 65 72 65 66 6f 72 65 2c |......Th|erefore,|
|00001ca0| 20 74 68 65 20 65 71 75 | 61 74 69 6f 6e 20 69 73 | the equ|ation is|
|00001cb0| 0d 0a 00 20 20 20 20 20 | 20 11 32 32 20 20 20 20 |... | .22 |
|00001cc0| 32 0d 0b 00 20 20 20 20 | 20 11 33 78 20 20 20 20 |2... | .3x |
|00001cd0| 79 0d 0b 00 20 20 20 20 | 20 11 34 32 32 20 11 31 |y... | .422 .1|
|00001ce0| 2b 20 11 34 32 32 20 11 | 31 3d 20 31 2e 0d 0b 00 |+ .422 .|1= 1....|
|00001cf0| 20 20 20 20 20 39 20 20 | 20 20 38 0d 0a 00 53 65 | 9 | 8...Se|
|00001d00| 63 74 69 6f 6e 20 34 2e | 34 20 20 43 6f 6e 69 63 |ction 4.|4 Conic|
|00001d10| 73 0d 0b 00 46 69 6e 64 | 20 61 6e 20 65 71 75 61 |s...Find| an equa|
|00001d20| 74 69 6f 6e 20 6f 66 20 | 74 68 65 20 65 6c 6c 69 |tion of |the elli|
|00001d30| 70 73 65 20 77 69 74 68 | 20 63 65 6e 74 65 72 20 |pse with| center |
|00001d40| 61 74 20 74 68 65 20 6f | 72 69 67 69 6e 2c 20 76 |at the o|rigin, v|
|00001d50| 65 72 74 69 63 65 73 20 | 0d 0a 00 20 20 20 20 20 |ertices |... |
|00001d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d80| 20 11 34 28 20 20 20 20 | 20 44 32 29 0d 0b 00 11 | .4( | D2)....|
|00001d90| 31 28 30 2c 20 11 34 2b | 11 31 36 29 2c 20 61 6e |1(0, .4+|.16), an|
|00001da0| 64 20 70 61 73 73 65 73 | 20 74 68 72 6f 75 67 68 |d passes| through|
|00001db0| 20 74 68 65 20 70 6f 69 | 6e 74 20 11 34 21 11 31 | the poi|nt .4!.1|
|00001dc0| 31 2c 20 34 11 34 53 20 | 11 31 32 11 34 21 11 31 |1, 4.4S |.12.4!.1|
|00001dd0| 2e 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00001de0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001df0| 20 20 20 20 20 20 20 20 | 20 20 11 34 39 20 20 20 | | .49 |
|00001e00| 20 20 20 20 30 0d 0a 00 | 0d 0b 00 11 31 13 12 31 | 0...|....1..1|
|00001e10| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00001e20| 53 69 6e 63 65 20 74 68 | 65 20 76 65 72 74 69 63 |Since th|e vertic|
|00001e30| 65 73 20 6f 63 63 75 72 | 20 61 74 20 28 30 2c 20 |es occur| at (0, |
|00001e40| 36 29 20 61 6e 64 20 28 | 30 2c 20 2d 36 29 20 77 |6) and (|0, -6) w|
|00001e50| 65 20 6b 6e 6f 77 20 74 | 68 61 74 20 74 68 65 20 |e know t|hat the |
|00001e60| 6d 61 6a 6f 72 20 61 78 | 69 73 0d 0a 00 69 73 20 |major ax|is...is |
|00001e70| 76 65 72 74 69 63 61 6c | 20 61 6e 64 20 11 33 61 |vertical| and .3a|
|00001e80| 20 11 31 3d 20 36 2e 13 | 0d 0a 00 0d 0b 00 54 68 | .1= 6..|......Th|
|00001e90| 65 72 65 66 6f 72 65 20 | 77 65 20 68 61 76 65 20 |erefore |we have |
|00001ea0| 74 68 65 20 66 6f 72 6d | 0d 0a 00 20 20 20 20 20 |the form|... |
|00001eb0| 20 11 32 32 20 20 20 20 | 32 20 20 20 20 20 20 20 | .22 |2 |
|00001ec0| 20 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 32 | | 2 2|
|00001ed0| 0d 0b 00 20 20 20 20 20 | 11 33 78 20 20 20 20 79 |... |.3x y|
|00001ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ef0| 20 78 20 20 20 20 79 0d | 0b 00 20 20 20 20 20 11 | x y.|.. .|
|00001f00| 34 32 32 20 11 31 2b 20 | 11 34 32 32 20 11 31 3d |422 .1+ |.422 .1=|
|00001f10| 20 31 20 20 20 20 20 6f | 72 20 20 20 20 20 11 34 | 1 o|r .4|
|00001f20| 32 32 20 11 31 2b 20 11 | 34 32 32 20 11 31 3d 20 |22 .1+ .|422 .1= |
|00001f30| 31 2e 0d 0b 00 20 20 20 | 20 20 20 11 32 32 20 20 |1.... | .22 |
|00001f40| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00001f50| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 11 33 62 | 2...| .3b|
|00001f60| 20 20 20 20 61 20 20 20 | 20 20 20 20 20 20 20 20 | a | |
|00001f70| 20 20 20 20 20 20 62 20 | 20 20 20 11 31 33 36 20 | b | .136 |
|00001f80| 20 20 20 20 20 13 0d 0a | 00 20 20 20 20 20 20 20 | ...|. |
|00001f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001fa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001fb0| 20 20 20 20 20 20 20 20 | 20 11 34 28 20 20 20 20 | | .4( |
|00001fc0| 20 44 32 29 0d 0b 00 11 | 31 4b 6e 6f 77 69 6e 67 | D2)....|1Knowing|
|00001fd0| 20 74 68 61 74 20 74 68 | 65 20 67 72 61 70 68 20 | that th|e graph |
|00001fe0| 70 61 73 73 65 73 20 74 | 68 72 6f 75 67 68 20 74 |passes t|hrough t|
|00001ff0| 68 65 20 70 6f 69 6e 74 | 20 11 34 21 11 31 31 2c |he point| .4!.11,|
|00002000| 20 34 11 34 53 20 11 31 | 32 11 34 21 11 31 2c 20 | 4.4S .1|2.4!.1, |
|00002010| 77 65 20 63 61 6e 20 70 | 6c 75 67 20 74 68 65 73 |we can p|lug thes|
|00002020| 65 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |e... | |
|00002030| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002040| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002050| 20 20 20 20 11 34 39 20 | 20 20 20 20 20 20 30 0d | .49 | 0.|
|00002060| 0a 00 11 31 76 61 6c 75 | 65 73 20 69 6e 74 6f 20 |...1valu|es into |
|00002070| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 74 6f 20 |the equa|tion to |
|00002080| 64 65 74 65 72 6d 69 6e | 65 20 11 33 62 20 11 31 |determin|e .3b .1|
|00002090| 61 73 20 73 68 6f 77 6e | 20 6f 6e 20 74 68 65 20 |as shown| on the |
|000020a0| 6e 65 78 74 20 70 61 67 | 65 2e 00 0c 0d 0a 00 20 |next pag|e...... |
|000020b0| 11 32 32 20 20 20 20 20 | 20 11 34 44 32 20 11 32 |.22 | .4D2 .2|
|000020c0| 32 0d 0b 00 11 31 31 20 | 20 20 20 28 34 11 34 53 |2....11 | (4.4S|
|000020d0| 20 11 31 32 29 0d 0b 00 | 11 34 32 32 20 11 31 2b | .12)...|.422 .1+|
|000020e0| 20 11 34 32 32 32 32 32 | 32 20 20 11 31 3d 20 31 | .422222|2 .1= 1|
|000020f0| 0d 0b 00 20 11 32 32 20 | 20 20 20 20 11 31 33 36 |... .22 | .136|
|00002100| 0d 0b 00 11 33 62 20 20 | 20 20 20 20 20 20 20 20 |....3b | |
|00002110| 20 20 20 20 20 11 31 13 | 0d 0a 00 20 20 20 20 20 | .1.|... |
|00002120| 20 20 20 20 20 31 20 20 | 20 20 20 20 20 20 33 32 | 1 | 32|
|00002130| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 11 34 32 |... | .42|
|00002140| 32 20 11 31 3d 20 31 20 | 2d 20 11 34 32 32 20 0d |2 .1= 1 |- .422 .|
|00002150| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 |.. | .22|
|00002160| 20 20 20 20 20 20 20 11 | 31 33 36 0d 0b 00 20 20 | .|136... |
|00002170| 20 20 20 20 20 20 20 20 | 11 33 62 20 20 20 20 20 | |.3b |
|00002180| 20 20 20 20 20 20 11 31 | 13 0d 0a 00 20 20 20 20 | .1|.... |
|00002190| 20 20 20 20 20 20 31 20 | 20 20 20 31 0d 0b 00 20 | 1 | 1... |
|000021a0| 20 20 20 20 20 20 20 20 | 20 11 34 32 32 20 11 31 | | .422 .1|
|000021b0| 3d 20 11 34 32 20 0d 0b | 00 20 20 20 20 20 20 20 |= .42 ..|. |
|000021c0| 20 20 20 20 11 32 32 20 | 20 20 11 31 39 0d 0b 00 | .22 | .19...|
|000021d0| 20 20 20 20 20 20 20 20 | 20 20 11 33 62 20 20 20 | | .3b |
|000021e0| 20 20 20 11 31 13 0d 0a | 00 20 20 20 20 20 20 20 | .1...|. |
|000021f0| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|00002200| 20 20 20 20 20 20 11 33 | 62 20 11 31 3d 20 39 13 | .3|b .1= 9.|
|00002210| 20 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | ...... | |
|00002220| 20 20 11 33 62 20 11 31 | 3d 20 11 34 2b 11 31 33 | .3b .1|= .4+.13|
|00002230| 13 0d 0a 00 0d 0b 00 54 | 68 65 72 65 66 6f 72 65 |.......T|herefore|
|00002240| 2c 20 6f 75 72 20 65 71 | 75 61 74 69 6f 6e 20 69 |, our eq|uation i|
|00002250| 73 20 0d 0a 00 20 20 20 | 20 20 20 11 32 32 20 20 |s ... | .22 |
|00002260| 20 20 32 0d 0b 00 20 20 | 20 20 20 11 33 78 20 20 | 2... | .3x |
|00002270| 20 20 79 0d 0b 00 20 20 | 20 20 20 11 34 32 32 20 | y... | .422 |
|00002280| 11 31 2b 20 11 34 32 32 | 20 11 31 3d 20 31 2e 0d |.1+ .422| .1= 1..|
|00002290| 0b 00 20 20 20 20 20 39 | 20 20 20 20 33 36 0d 0a |.. 9| 36..|
|000022a0| 00 53 65 63 74 69 6f 6e | 20 34 2e 34 20 20 43 6f |.Section| 4.4 Co|
|000022b0| 6e 69 63 73 0d 0b 00 46 | 69 6e 64 20 74 68 65 20 |nics...F|ind the |
|000022c0| 63 65 6e 74 65 72 20 61 | 6e 64 20 76 65 72 74 69 |center a|nd verti|
|000022d0| 63 65 73 20 6f 66 20 74 | 68 65 20 68 79 70 65 72 |ces of t|he hyper|
|000022e0| 62 6f 6c 61 20 61 6e 64 | 20 73 6b 65 74 63 68 20 |bola and| sketch |
|000022f0| 69 74 73 20 67 72 61 70 | 68 2c 20 75 73 69 6e 67 |its grap|h, using|
|00002300| 0d 0a 00 61 73 79 6d 70 | 74 6f 74 65 73 20 61 73 |...asymp|totes as|
|00002310| 20 61 6e 20 61 69 64 2e | 0d 0a 00 20 20 20 20 20 | an aid.|... |
|00002320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002330| 20 11 32 32 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | .22 |2... |
|00002340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002350| 11 31 39 11 33 78 20 20 | 11 31 2d 20 11 33 79 20 |.19.3x |.1- .3y |
|00002360| 20 11 31 3d 20 39 0d 0a | 00 0d 0b 00 13 12 31 53 | .1= 9..|......1S|
|00002370| 4f 4c 55 54 49 4f 4e 12 | 30 0d 0a 00 0d 0b 00 57 |OLUTION.|0......W|
|00002380| 65 20 62 65 67 69 6e 20 | 62 79 20 77 72 69 74 69 |e begin |by writi|
|00002390| 6e 67 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |ng the e|quation |
|000023a0| 69 6e 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |in stand|ard form|
|000023b0| 2e 0d 0a 00 20 20 20 20 | 20 20 20 11 32 32 20 20 |.... | .22 |
|000023c0| 20 20 32 0d 0b 00 20 20 | 20 20 20 11 31 39 11 33 | 2... | .19.3|
|000023d0| 78 20 20 11 31 2d 20 11 | 33 79 20 20 11 31 3d 20 |x .1- .|3y .1= |
|000023e0| 39 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |9 | |
|000023f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 12 31 11 | | .1.|
|00002400| 32 47 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 11 |2Given e|quation.|
|00002410| 31 12 30 13 0d 0a 00 20 | 20 20 20 20 20 20 11 32 |1.0.... | .2|
|00002420| 32 20 20 20 20 32 0d 0b | 00 20 20 20 20 20 20 11 |2 2..|. .|
|00002430| 33 78 20 20 20 20 79 0d | 0b 00 20 20 20 20 20 20 |3x y.|.. |
|00002440| 11 34 32 32 20 11 31 2d | 20 11 34 32 32 20 11 31 |.422 .1-| .422 .1|
|00002450| 3d 20 31 0d 0b 00 20 20 | 20 20 20 20 31 20 20 20 |= 1... | 1 |
|00002460| 20 39 20 20 20 20 20 20 | 20 20 13 0d 0a 00 20 20 | 9 | .... |
|00002470| 20 20 20 20 20 11 32 32 | 20 20 20 20 32 0d 0b 00 | .22| 2...|
|00002480| 20 20 20 20 20 20 11 33 | 78 20 20 20 20 79 0d 0b | .3|x y..|
|00002490| 00 20 20 20 20 20 20 11 | 34 32 32 20 11 31 2d 20 |. .|422 .1- |
|000024a0| 11 34 32 32 20 11 31 3d | 20 31 20 20 20 20 20 20 |.422 .1=| 1 |
|000024b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024c0| 20 20 20 20 20 20 12 31 | 11 32 53 74 61 6e 64 61 | .1|.2Standa|
|000024d0| 72 64 20 66 6f 72 6d 11 | 31 12 30 0d 0b 00 20 20 |rd form.|1.0... |
|000024e0| 20 20 20 20 20 11 32 32 | 20 20 20 20 32 0d 0b 00 | .22| 2...|
|000024f0| 20 20 20 20 20 20 11 31 | 31 20 20 20 20 33 20 20 | .1|1 3 |
|00002500| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002530| 20 20 13 0d 0a 00 0d 0b | 00 57 65 20 6e 6f 74 65 | ......|.We note|
|00002540| 20 74 68 61 74 20 74 68 | 69 73 20 69 73 20 74 68 | that th|is is th|
|00002550| 65 20 73 74 61 6e 64 61 | 72 64 20 66 6f 72 6d 20 |e standa|rd form |
|00002560| 6f 66 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |of the e|quation |
|00002570| 6f 66 20 61 20 68 79 70 | 65 72 62 6f 6c 61 20 77 |of a hyp|erbola w|
|00002580| 69 74 68 0d 0a 00 63 65 | 6e 74 65 72 20 61 74 20 |ith...ce|nter at |
|00002590| 28 30 2c 20 30 29 20 77 | 68 65 72 65 20 11 33 61 |(0, 0) w|here .3a|
|000025a0| 20 11 31 3d 20 31 20 61 | 6e 64 20 11 33 62 20 11 | .1= 1 a|nd .3b .|
|000025b0| 31 3d 20 33 2e 00 0c 0d | 0b 00 20 20 20 20 20 20 |1= 3....|.. |
|000025c0| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 11 31 42 | .|22....1B|
|000025d0| 65 63 61 75 73 65 20 74 | 68 65 20 11 33 78 20 11 |ecause t|he .3x .|
|000025e0| 31 2d 74 65 72 6d 20 69 | 73 20 70 6f 73 69 74 69 |1-term i|s positi|
|000025f0| 76 65 2c 20 77 65 20 63 | 6f 6e 63 6c 75 64 65 20 |ve, we c|onclude |
|00002600| 74 68 61 74 20 74 68 65 | 20 74 72 61 6e 73 76 65 |that the| transve|
|00002610| 72 73 65 20 61 78 69 73 | 20 69 73 20 0d 0a 00 68 |rse axis| is ...h|
|00002620| 6f 72 69 7a 6f 6e 74 61 | 6c 20 61 6e 64 20 74 68 |orizonta|l and th|
|00002630| 65 20 76 65 72 74 69 63 | 65 73 20 6f 63 63 75 72 |e vertic|es occur|
|00002640| 20 61 74 20 28 2d 31 2c | 20 30 29 20 61 6e 64 20 | at (-1,| 0) and |
|00002650| 28 31 2c 20 30 29 2e 13 | 0d 0a 00 0d 0b 00 4b 6e |(1, 0)..|......Kn|
|00002660| 6f 77 69 6e 67 20 74 68 | 61 74 20 74 68 65 20 74 |owing th|at the t|
|00002670| 72 61 6e 73 76 65 72 73 | 65 20 61 78 69 73 20 69 |ransvers|e axis i|
|00002680| 73 20 68 6f 72 69 7a 6f | 6e 74 61 6c 20 77 65 20 |s horizo|ntal we |
|00002690| 75 73 65 20 74 68 65 20 | 76 61 6c 75 65 73 20 6f |use the |values o|
|000026a0| 66 20 11 33 61 20 11 31 | 61 6e 64 0d 0a 00 11 33 |f .3a .1|and....3|
|000026b0| 62 20 11 31 74 6f 20 64 | 65 74 65 72 6d 69 6e 65 |b .1to d|etermine|
|000026c0| 20 74 68 65 20 61 73 79 | 6d 70 74 6f 74 65 73 2e | the asy|mptotes.|
|000026d0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 11 33 62 |... | .3b|
|000026e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000026f0| 31 33 0d 0b 00 20 20 20 | 20 20 11 33 79 20 11 31 |13... | .3y .1|
|00002700| 3d 20 11 34 2b 32 11 33 | 78 20 20 20 20 20 20 20 |= .4+2.3|x |
|00002710| 20 20 79 20 11 31 3d 20 | 11 34 2b 32 11 33 78 0d | y .1= |.4+2.3x.|
|00002720| 0b 00 20 20 20 20 20 20 | 20 20 20 20 61 20 20 20 |.. | a |
|00002730| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 31 20 | | .11 |
|00002740| 13 0d 0a 00 0d 0b 00 54 | 68 65 72 65 66 6f 72 65 |.......T|herefore|
|00002750| 2c 20 6f 75 72 20 73 6b | 65 74 63 68 20 63 6f 6d |, our sk|etch com|
|00002760| 65 73 20 6f 75 74 20 61 | 73 20 73 68 6f 77 6e 20 |es out a|s shown |
|00002770| 62 65 6c 6f 77 2e 0d 0a | 00 0d 0a 00 0d 0a 00 0d |below...|........|
|00002780| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 14 6b 2d |.. | .k-|
|00002790| 35 2d 33 2d 36 2e 68 69 | 14 32 30 14 31 38 14 31 |5-3-6.hi|.20.18.1|
|000027a0| 38 14 38 14 0d 0a 00 0d | 0a 00 53 65 63 74 69 6f |8.8.....|..Sectio|
|000027b0| 6e 20 34 2e 34 20 20 43 | 6f 6e 69 63 73 0d 0b 00 |n 4.4 C|onics...|
|000027c0| 46 69 6e 64 20 61 6e 20 | 65 71 75 61 74 69 6f 6e |Find an |equation|
|000027d0| 20 6f 66 20 74 68 65 20 | 68 79 70 65 72 62 6f 6c | of the |hyperbol|
|000027e0| 61 20 77 69 74 68 20 63 | 65 6e 74 65 72 20 61 74 |a with c|enter at|
|000027f0| 20 74 68 65 20 6f 72 69 | 67 69 6e 2c 20 76 65 72 | the ori|gin, ver|
|00002800| 74 69 63 65 73 20 61 74 | 0d 0a 00 28 11 34 2b 11 |tices at|...(.4+.|
|00002810| 31 33 2c 20 30 29 20 61 | 6e 64 20 61 73 79 6d 70 |13, 0) a|nd asymp|
|00002820| 74 6f 74 65 73 20 11 33 | 79 20 11 31 3d 20 11 34 |totes .3|y .1= .4|
|00002830| 2b 11 31 32 11 33 78 11 | 31 2e 0d 0a 00 0d 0b 00 |+.12.3x.|1.......|
|00002840| 13 12 31 53 4f 4c 55 54 | 49 4f 4e 12 30 0d 0a 00 |..1SOLUT|ION.0...|
|00002850| 0d 0b 00 53 69 6e 63 65 | 20 74 68 65 20 76 65 72 |...Since| the ver|
|00002860| 74 69 63 65 73 20 6f 63 | 63 75 72 20 61 74 20 28 |tices oc|cur at (|
|00002870| 2d 33 2c 20 30 29 20 61 | 6e 64 20 28 33 2c 20 30 |-3, 0) a|nd (3, 0|
|00002880| 29 20 77 65 20 6b 6e 6f | 77 20 74 68 61 74 20 74 |) we kno|w that t|
|00002890| 68 65 20 74 72 61 6e 73 | 76 65 72 73 65 0d 0a 00 |he trans|verse...|
|000028a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000028b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000028c0| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|000028d0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|000028e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000028f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00002900| 20 20 20 79 0d 0b 00 11 | 31 61 78 69 73 20 69 73 | y....|1axis is|
|00002910| 20 68 6f 72 69 7a 6f 6e | 74 61 6c 20 61 6e 64 20 | horizon|tal and |
|00002920| 77 65 20 68 61 76 65 20 | 74 68 65 20 66 6f 72 6d |we have |the form|
|00002930| 20 11 34 32 32 20 11 31 | 2d 20 11 34 32 32 20 11 | .422 .1|- .422 .|
|00002940| 31 3d 20 31 20 77 68 65 | 72 65 20 11 33 61 20 11 |1= 1 whe|re .3a .|
|00002950| 31 3d 20 33 2e 0d 0b 00 | 20 20 20 20 20 20 20 20 |1= 3....| |
|00002960| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002970| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002980| 20 11 32 32 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | .22 |2... |
|00002990| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029b0| 20 20 20 20 11 33 61 20 | 20 20 20 62 20 20 20 20 | .3a | b |
|000029c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|000029d0| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|000029e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a00| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 62 0d 0b | | .3b..|
|00002a10| 00 11 31 57 65 20 61 6c | 73 6f 20 6b 6e 6f 77 20 |..1We al|so know |
|00002a20| 74 68 61 74 20 74 68 65 | 20 61 73 79 6d 70 74 6f |that the| asympto|
|00002a30| 74 65 73 20 61 72 65 20 | 6f 66 20 74 68 65 20 66 |tes are |of the f|
|00002a40| 6f 72 6d 20 11 33 79 20 | 11 31 3d 20 11 34 2b 20 |orm .3y |.1= .4+ |
|00002a50| 32 11 33 78 11 31 2e 0d | 0b 00 20 20 20 20 20 20 |2.3x.1..|.. |
|00002a60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a90| 20 11 33 61 20 20 11 31 | 13 0d 0a 00 0d 0b 00 53 | .3a .1|.......S|
|00002aa0| 69 6e 63 65 20 74 68 65 | 20 61 73 79 6d 70 74 6f |ince the| asympto|
|00002ab0| 74 65 73 20 61 72 65 20 | 67 69 76 65 6e 20 61 73 |tes are |given as|
|00002ac0| 20 11 33 79 20 11 31 3d | 20 11 34 2b 11 31 32 11 | .3y .1=| .4+.12.|
|00002ad0| 33 78 20 11 31 77 65 20 | 68 61 76 65 0d 0a 00 0d |3x .1we |have....|
|00002ae0| 0b 00 20 20 20 20 20 11 | 33 62 20 20 20 20 20 20 |.. .|3b |
|00002af0| 20 20 20 20 20 20 20 20 | 62 0d 0b 00 20 20 20 20 | |b... |
|00002b00| 20 11 34 32 20 11 31 3d | 20 32 20 20 20 11 34 35 | .42 .1=| 2 .45|
|00002b10| 35 36 20 20 20 20 32 20 | 11 31 3d 20 32 20 20 0d |56 2 |.1= 2 .|
|00002b20| 0b 00 20 20 20 20 20 11 | 33 61 20 20 20 20 20 20 |.. .|3a |
|00002b30| 20 20 20 20 20 20 20 20 | 11 31 33 0d 0a 00 20 20 | |.13... |
|00002b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002b50| 20 20 11 33 62 20 11 31 | 3d 20 36 2e 00 0c 0d 0a | .3b .1|= 6.....|
|00002b60| 00 54 68 65 72 65 66 6f | 72 65 2c 20 6f 75 72 20 |.Therefo|re, our |
|00002b70| 65 71 75 61 74 69 6f 6e | 20 69 73 20 0d 0a 00 20 |equation| is ... |
|00002b80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002b90| 32 32 20 20 20 20 32 0d | 0b 00 20 20 20 20 20 20 |22 2.|.. |
|00002ba0| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 20 20 20 | | .3x |
|00002bb0| 79 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |y... | |
|00002bc0| 20 20 20 11 34 32 32 20 | 11 31 2d 20 11 34 32 32 | .422 |.1- .422|
|00002bd0| 20 11 31 3d 20 31 2e 0d | 0b 00 20 20 20 20 20 20 | .1= 1..|.. |
|00002be0| 20 20 20 20 20 20 20 20 | 20 39 20 20 20 20 33 36 | | 9 36|
|00002bf0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 34 2e 34 20 20 |...Secti|on 4.4 |
|00002c00| 43 6f 6e 69 63 73 0d 0b | 00 4d 61 74 63 68 20 74 |Conics..|.Match t|
|00002c10| 68 65 20 65 71 75 61 74 | 69 6f 6e 20 77 69 74 68 |he equat|ion with|
|00002c20| 20 69 74 73 20 67 72 61 | 70 68 2e 0d 0a 00 20 20 | its gra|ph.... |
|00002c30| 20 20 20 11 32 32 20 20 | 20 20 32 20 20 20 20 20 | .22 | 2 |
|00002c40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 20 | | 2 |
|00002c50| 20 20 20 32 0d 0b 00 20 | 20 20 20 11 33 78 20 20 | 2... | .3x |
|00002c60| 20 20 79 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | y | |
|00002c70| 20 20 20 20 20 20 78 20 | 20 20 20 79 20 20 20 20 | x | y |
|00002c80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002c90| 32 32 0d 0b 00 11 31 28 | 61 29 20 11 34 32 32 20 |22....1(|a) .422 |
|00002ca0| 11 31 2d 20 11 34 32 32 | 20 11 31 3d 20 31 20 20 |.1- .422| .1= 1 |
|00002cb0| 20 20 20 20 20 20 20 20 | 28 62 29 20 11 34 32 32 | |(b) .422|
|00002cc0| 20 11 31 2b 20 11 34 32 | 32 20 11 31 3d 20 31 20 | .1+ .42|2 .1= 1 |
|00002cd0| 20 20 20 20 20 20 20 20 | 28 63 29 20 11 33 78 20 | |(c) .3x |
|00002ce0| 20 11 31 3d 20 31 32 11 | 33 79 0d 0b 00 20 20 20 | .1= 12.|3y... |
|00002cf0| 20 11 31 39 20 20 20 20 | 34 20 20 20 20 20 20 20 | .19 |4 |
|00002d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 39 20 20 20 | | 9 |
|00002d10| 20 34 0d 0a 00 0d 0a 00 | 20 20 49 2e 20 20 20 20 | 4......| I. |
|00002d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d30| 20 20 20 20 49 49 2e 20 | 20 20 20 20 20 20 20 20 | II. | |
|00002d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 49 49 49 2e | | III.|
|00002d50| 0d 0a 00 20 20 20 20 20 | 20 14 6b 2d 35 2d 33 2d |... | .k-5-3-|
|00002d60| 31 2e 68 69 14 35 14 36 | 14 31 36 14 38 14 20 20 |1.hi.5.6|.16.8. |
|00002d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d80| 20 20 20 20 20 20 20 20 | 14 6b 2d 35 2d 33 2d 32 | |.k-5-3-2|
|00002d90| 2e 68 69 14 33 30 14 36 | 14 31 36 14 38 14 20 20 |.hi.30.6|.16.8. |
|00002da0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002db0| 20 20 20 20 20 20 20 14 | 6b 2d 35 2d 33 2d 33 2e | .|k-5-3-3.|
|00002dc0| 68 69 14 35 35 14 36 14 | 31 36 14 38 14 20 20 20 |hi.55.6.|16.8. |
|00002dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002de0| 20 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 | .......|........|
|00002df0| 0d 0a 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00002e00| 0d 0a 00 20 20 20 20 20 | 11 32 32 20 20 20 20 32 |... |.22 2|
|00002e10| 0d 0b 00 20 20 20 20 11 | 33 78 20 20 20 20 79 0d |... .|3x y.|
|00002e20| 0b 00 11 31 28 61 29 20 | 11 34 32 32 20 11 31 2d |...1(a) |.422 .1-|
|00002e30| 20 11 34 32 32 20 11 31 | 3d 20 31 20 20 57 65 20 | .422 .1|= 1 We |
|00002e40| 72 65 63 6f 67 6e 69 7a | 65 20 74 68 69 73 20 65 |recogniz|e this e|
|00002e50| 71 75 61 74 69 6f 6e 20 | 61 73 20 61 20 68 79 70 |quation |as a hyp|
|00002e60| 65 72 62 6f 6c 61 20 77 | 69 74 68 20 61 20 68 6f |erbola w|ith a ho|
|00002e70| 72 69 7a 6f 6e 74 61 6c | 0d 0b 00 20 20 20 20 39 |rizontal|... 9|
|00002e80| 20 20 20 20 34 0d 0b 00 | 20 20 20 20 20 20 20 20 | 4...| |
|00002e90| 20 20 20 20 20 20 20 20 | 20 74 72 61 6e 73 76 65 | | transve|
|00002ea0| 72 73 65 20 61 78 69 73 | 2c 20 73 6f 20 77 65 20 |rse axis|, so we |
|00002eb0| 63 68 6f 6f 73 65 20 47 | 72 61 70 68 20 49 49 2e |choose G|raph II.|
|00002ec0| 00 0c 0d 0a 00 20 20 20 | 20 20 11 32 32 20 20 20 |..... | .22 |
|00002ed0| 20 32 0d 0b 00 20 20 20 | 20 11 33 78 20 20 20 20 | 2... | .3x |
|00002ee0| 79 0d 0b 00 11 31 28 62 | 29 20 11 34 32 32 20 11 |y....1(b|) .422 .|
|00002ef0| 31 2b 20 11 34 32 32 20 | 11 31 3d 20 31 20 20 57 |1+ .422 |.1= 1 W|
|00002f00| 65 20 72 65 63 6f 67 6e | 69 7a 65 20 74 68 69 73 |e recogn|ize this|
|00002f10| 20 65 71 75 61 74 69 6f | 6e 20 61 73 20 61 6e 20 | equatio|n as an |
|00002f20| 65 6c 6c 69 70 73 65 20 | 77 69 74 68 20 61 20 68 |ellipse |with a h|
|00002f30| 6f 72 69 7a 6f 6e 74 61 | 6c 0d 0b 00 20 20 20 20 |orizonta|l... |
|00002f40| 39 20 20 20 20 34 0d 0b | 00 20 20 20 20 20 20 20 |9 4..|. |
|00002f50| 20 20 20 20 20 20 20 20 | 20 20 6d 61 6a 6f 72 20 | | major |
|00002f60| 61 78 69 73 2c 20 73 6f | 20 77 65 20 63 68 6f 6f |axis, so| we choo|
|00002f70| 73 65 20 47 72 61 70 68 | 20 49 49 49 2e 13 0d 0a |se Graph| III....|
|00002f80| 00 0d 0b 00 20 20 20 20 | 20 11 32 32 0d 0b 00 11 |.... | .22....|
|00002f90| 31 28 63 29 20 11 33 78 | 20 20 11 31 3d 20 31 32 |1(c) .3x| .1= 12|
|00002fa0| 11 33 79 20 20 20 20 20 | 11 31 57 65 20 72 65 63 |.3y |.1We rec|
|00002fb0| 6f 67 6e 69 7a 65 20 74 | 68 69 73 20 65 71 75 61 |ognize t|his equa|
|00002fc0| 74 69 6f 6e 20 61 73 20 | 61 20 70 61 72 61 62 6f |tion as |a parabo|
|00002fd0| 6c 61 20 6f 70 65 6e 69 | 6e 67 20 75 70 77 61 72 |la openi|ng upwar|
|00002fe0| 64 2c 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |d,... | |
|00002ff0| 20 20 20 20 20 20 73 6f | 20 77 65 20 63 68 6f 6f | so| we choo|
|00003000| 73 65 20 47 72 61 70 68 | 20 49 2e 0d 0a 00 53 65 |se Graph| I....Se|
|00003010| 63 74 69 6f 6e 20 34 2e | 34 20 20 43 6f 6e 69 63 |ction 4.|4 Conic|
|00003020| 73 0d 0b 00 59 6f 75 20 | 61 72 65 20 74 6f 20 64 |s...You |are to d|
|00003030| 72 61 77 20 61 6e 20 65 | 6c 6c 69 70 73 65 20 74 |raw an e|llipse t|
|00003040| 68 61 74 20 69 73 20 36 | 20 69 6e 63 68 65 73 20 |hat is 6| inches |
|00003050| 6c 6f 6e 67 20 61 6e 64 | 20 31 30 20 69 6e 63 68 |long and| 10 inch|
|00003060| 65 73 20 68 69 67 68 20 | 0d 0a 00 61 63 63 6f 72 |es high |...accor|
|00003070| 64 69 6e 67 20 74 6f 20 | 74 68 65 20 6d 65 74 68 |ding to |the meth|
|00003080| 6f 64 20 73 68 6f 77 6e | 20 69 6e 20 46 69 67 75 |od shown| in Figu|
|00003090| 72 65 20 34 2e 32 33 20 | 6f 66 20 74 68 65 20 74 |re 4.23 |of the t|
|000030a0| 65 78 74 2e 20 20 57 68 | 65 72 65 20 73 68 6f 75 |ext. Wh|ere shou|
|000030b0| 6c 64 0d 0a 00 74 68 65 | 20 74 61 63 6b 73 20 62 |ld...the| tacks b|
|000030c0| 65 20 70 6c 61 63 65 64 | 20 61 6e 64 20 77 68 61 |e placed| and wha|
|000030d0| 74 20 73 68 6f 75 6c 64 | 20 62 65 20 74 68 65 20 |t should| be the |
|000030e0| 6c 65 6e 67 74 68 20 6f | 66 20 74 68 65 20 70 69 |length o|f the pi|
|000030f0| 65 63 65 20 6f 66 20 73 | 74 72 69 6e 67 3f 0d 0a |ece of s|tring?..|
|00003100| 00 0d 0b 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|00003110| 30 0d 0a 00 0d 0b 00 54 | 68 65 20 68 65 69 67 68 |0......T|he heigh|
|00003120| 74 20 6f 66 20 74 68 65 | 20 65 6c 6c 69 70 73 65 |t of the| ellipse|
|00003130| 20 69 73 20 74 6f 20 62 | 65 20 31 30 20 69 6e 63 | is to b|e 10 inc|
|00003140| 68 65 73 2e 20 20 54 68 | 65 72 65 66 6f 72 65 2c |hes. Th|erefore,|
|00003150| 20 74 68 65 20 76 61 6c | 75 65 20 66 6f 72 20 0d | the val|ue for .|
|00003160| 0a 00 20 20 20 20 20 31 | 0d 0b 00 11 33 61 20 11 |.. 1|....3a .|
|00003170| 31 69 73 20 11 34 32 11 | 31 28 31 30 29 20 3d 20 |1is .42.|1(10) = |
|00003180| 35 2e 0d 0b 00 20 20 20 | 20 20 32 20 20 20 20 20 |5.... | 2 |
|00003190| 20 20 20 20 13 0d 0a 00 | 0d 0b 00 54 68 65 20 64 | ....|...The d|
|000031a0| 69 73 74 61 6e 63 65 20 | 61 63 72 6f 73 73 20 74 |istance |across t|
|000031b0| 68 65 20 65 6c 6c 69 70 | 73 65 20 69 73 20 74 6f |he ellip|se is to|
|000031c0| 20 62 65 20 36 20 69 6e | 63 68 65 73 2e 20 20 54 | be 6 in|ches. T|
|000031d0| 68 65 72 65 66 6f 72 65 | 2c 20 74 68 65 20 76 61 |herefore|, the va|
|000031e0| 6c 75 65 20 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |lue ... | |
|000031f0| 31 0d 0b 00 66 6f 72 20 | 11 33 62 20 11 31 69 73 |1...for |.3b .1is|
|00003200| 20 11 34 32 11 31 28 36 | 29 20 3d 20 33 2e 0d 0b | .42.1(6|) = 3...|
|00003210| 00 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 20 |. | 2 |
|00003220| 20 20 20 13 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | .... | |
|00003230| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 | | .22 |
|00003240| 20 20 32 20 20 20 20 32 | 0d 0b 00 11 31 55 73 69 | 2 2|....1Usi|
|00003250| 6e 67 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |ng the e|quation |
|00003260| 11 33 63 20 20 11 31 3d | 20 11 33 61 20 20 11 31 |.3c .1=| .3a .1|
|00003270| 2d 20 11 33 62 20 20 11 | 31 77 65 20 63 61 6e 20 |- .3b .|1we can |
|00003280| 64 65 74 65 72 6d 69 6e | 65 20 11 33 63 11 31 2e |determin|e .3c.1.|
|00003290| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|000032a0| 20 20 11 32 32 20 20 20 | 20 32 20 20 20 20 32 0d | .22 | 2 2.|
|000032b0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 11 33 63 |.. | .3c|
|000032c0| 20 20 11 31 3d 20 35 20 | 20 2d 20 33 20 20 3d 20 | .1= 5 | - 3 = |
|000032d0| 31 36 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |16......| |
|000032e0| 20 20 20 20 11 33 63 20 | 11 31 3d 20 34 00 0c 0d | .3c |.1= 4...|
|000032f0| 0a 00 0d 0b 00 55 73 69 | 6e 67 20 61 20 63 6f 6f |.....Usi|ng a coo|
|00003300| 72 64 69 6e 61 74 65 20 | 61 78 69 73 20 61 73 20 |rdinate |axis as |
|00003310| 73 68 6f 77 6e 20 62 65 | 6c 6f 77 2c 20 77 65 20 |shown be|low, we |
|00003320| 77 6f 75 6c 64 20 70 6c | 61 63 65 20 74 68 65 20 |would pl|ace the |
|00003330| 74 61 63 6b 73 20 61 74 | 20 28 30 2c 20 11 34 2b |tacks at| (0, .4+|
|00003340| 11 31 34 29 2e 0d 0a 00 | 0d 0a 00 0d 0a 00 0d 0a |.14)....|........|
|00003350| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 14 6b 2d |. | .k-|
|00003360| 35 2d 33 2d 37 2e 68 69 | 14 32 30 14 37 14 31 38 |5-3-7.hi|.20.7.18|
|00003370| 14 36 14 0d 0a 00 0d 0a | 00 20 20 20 20 20 20 20 |.6......|. |
|00003380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000033a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000033b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 13 | | .|
|000033c0| 0d 0a 00 0d 0a 00 0d 0b | 00 54 68 65 20 6c 65 6e |........|.The len|
|000033d0| 67 74 68 20 6f 66 20 74 | 68 65 20 73 74 72 69 6e |gth of t|he strin|
|000033e0| 67 20 6d 75 73 74 20 65 | 71 75 61 6c 20 74 68 65 |g must e|qual the|
|000033f0| 20 6c 65 6e 67 74 68 20 | 6f 66 20 74 68 65 20 6d | length |of the m|
|00003400| 61 6a 6f 72 20 61 78 69 | 73 20 77 68 69 63 68 0d |ajor axi|s which.|
|00003410| 0a 00 69 73 20 31 30 20 | 69 6e 63 68 65 73 2e 0d |..is 10 |inches..|
|00003420| 0a 00 23 00 00 00 50 03 | 00 00 4d 13 00 00 10 00 |..#...P.|..M.....|
|00003430| 00 00 00 00 00 00 65 34 | 2d 34 00 86 03 00 00 a9 |......e4|-4......|
|00003440| 05 00 00 4d 13 00 00 73 | 03 00 00 00 00 00 00 65 |...M...s|.......e|
|00003450| 34 2d 34 2d 31 00 42 09 | 00 00 da 05 00 00 4d 13 |4-4-1.B.|......M.|
|00003460| 00 00 2f 09 00 00 00 00 | 00 00 65 34 2d 34 2d 31 |../.....|..e4-4-1|
|00003470| 30 00 2f 0f 00 00 f8 01 | 00 00 4d 13 00 00 1c 0f |0./.....|..M.....|
|00003480| 00 00 00 00 00 00 65 34 | 2d 34 2d 32 00 3a 11 00 |......e4|-4-2.:..|
|00003490| 00 f8 01 00 00 4d 13 00 | 00 27 11 00 00 00 00 00 |.....M..|.'......|
|000034a0| 00 65 34 2d 34 2d 33 00 | 45 13 00 00 5b 02 00 00 |.e4-4-3.|E...[...|
|000034b0| 4d 13 00 00 32 13 00 00 | 00 00 00 00 65 34 2d 34 |M...2...|....e4-4|
|000034c0| 2d 34 00 b3 15 00 00 c5 | 04 00 00 4d 13 00 00 a0 |-4......|...M....|
|000034d0| 15 00 00 00 00 00 00 65 | 34 2d 34 2d 35 00 8b 1a |.......e|4-4-5...|
|000034e0| 00 00 73 02 00 00 4d 13 | 00 00 78 1a 00 00 00 00 |..s...M.|..x.....|
|000034f0| 00 00 65 34 2d 34 2d 36 | 00 11 1d 00 00 90 05 00 |..e4-4-6|........|
|00003500| 00 4d 13 00 00 fe 1c 00 | 00 00 00 00 00 65 34 2d |.M......|.....e4-|
|00003510| 34 2d 37 00 b4 22 00 00 | f6 04 00 00 4d 13 00 00 |4-7.."..|....M...|
|00003520| a1 22 00 00 00 00 00 00 | 65 34 2d 34 2d 38 00 bd |."......|e4-4-8..|
|00003530| 27 00 00 36 04 00 00 4d | 13 00 00 aa 27 00 00 00 |'..6...M|....'...|
|00003540| 00 00 00 65 34 2d 34 2d | 39 00 06 2c 00 00 08 04 |...e4-4-|9..,....|
|00003550| 00 00 4d 13 00 00 f3 2b | 00 00 00 00 00 00 69 34 |..M....+|......i4|
|00003560| 2d 34 2d 31 00 21 30 00 | 00 01 04 00 00 4d 13 00 |-4-1.!0.|.....M..|
|00003570| 00 0e 30 00 00 00 00 00 | 00 69 34 2d 34 2d 32 00 |..0.....|.i4-4-2.|
+--------+-------------------------+-------------------------+--------+--------+